Math 5 - Trigonometry - Chapter 5 Test Solutions - fall '07

1. The angle of elevation to the top of the Diesel Mechanics building from a point 82 feet from the base is 0.5 radians. Approximate the height the Diesel Mechanics building to the nearest foot.
SOLN: $\tan (0.5)=\frac{h}{82} \Rightarrow h \approx 0.5463(82) \approx 45 \mathrm{ft}$.
2. Find x correct to four significant digits. SOLN: $x=\frac{11.13}{\sqrt{3}}+11.13 \sqrt{3} \approx 25.70$

3. Find the area of the triangle at right:

$$
\text { SOLN: } \mathrm{A}=11(13) \sin \left(120^{\circ}\right) / 2=
$$

$$
=\frac{143 \sqrt{3}}{4} \approx 61.92
$$

4. If $\theta=\frac{2 \pi}{3}$ find the following.
a. $\quad \tan ^{2}(\theta)=\tan ^{2}\left(\frac{2 \pi}{3}\right)=(\sqrt{3})^{2}=3$
b. $\tan \left(\theta^{2}\right)=\tan \left(\frac{4 \pi^{2}}{9}\right) \approx \tan 4.3865 \approx 2.959$
5. Find the area of the shaded region in the figure if $r=13$ and $\theta=110^{\circ}$.

SOLN:

Area of sector - area of triangle $=$
$\frac{r^{2} \theta}{2}-\frac{1}{2} r^{2} \sin \theta=\frac{13^{2} 11 \pi}{2(18)}-\frac{13^{2}}{2} \sin \left(\frac{11 \pi}{18}\right)=\frac{1859 \pi}{36}-\frac{169}{2} \sin \left(\frac{11 \pi}{18}\right) \approx 162.2-79.4 \approx 82.8$
6. Find the value of x in the diagram below. Assume that $\angle A B C=13^{\circ}$ and $\angle A C B=11^{\circ}$

SOLN: $\frac{x}{\sin 13^{\circ}}=\frac{13}{\sin 156^{\circ}} \Leftrightarrow x=\frac{13 \sin 13^{\circ}}{\sin 156^{\circ}} \approx \frac{13(0.22495)}{(0.40674)} \approx 7.190$
7. Sketch the triangle with $\angle A=32^{\circ}, \angle C=68^{\circ}$ and $b=13.11$, then solve the triangle.
SOLN: $a=\frac{13.11 \sin 32^{\circ}}{\sin 80^{\circ}} \approx 7.054, \angle b=80^{\circ}$ and $c=\frac{13.11 \sin 68^{\circ}}{\sin 80^{\circ}} \approx 12.34$

8. To calculate the height of a mountain, angles $\alpha=11^{\circ}, \beta=13^{\circ}$ and $d=311 \mathrm{ft}$ are measured. Use the formula $h=d \frac{\sin \alpha \sin \beta}{\sin (\beta-\alpha)}$ to calculate the height.

SOLN: $h=d \frac{\sin \alpha \sin \beta}{\sin (\beta-\alpha)}=\frac{311 \sin 11^{\circ} \sin 13^{\circ}}{\sin 2^{\circ}} \approx \frac{311(0.19081)(0.22495)}{0.03490} \approx 382.5 \mathrm{ft}$
(Not much of a mountain.)
9. To find the distance across a lake, a surveyor has taken the measurements $a=11 \mathrm{mi} ., b=$ 13 mi . and $\angle C=40^{\circ}$. Find the distance across the lake using this information.
Round to 2 significant digits.

SOLN: By the law of cosines, the square of the distance is $11^{2}+13^{2}-2(11)(13) \cos \left(40^{\circ}\right) \approx 290-286(0.76604) \approx 70.91$ So $A B \approx 8.421$
10. A toy bicycle with one wheel of diameter 11 cm and a bigger wheel with diameter 13 cm is rolling along so that the big wheel is rolling at 10 rotations per minute. What is the angular speed of the little wheel?
SOLN: First find the linear speed of the bike: $v=\omega r=\frac{10 \mathrm{rotations}}{\min } \times \frac{2 \pi}{\text { rotation }} \times 6.5 \mathrm{~cm}=130 \pi \frac{\mathrm{~cm}}{\min }$
Then find the angular velocity of the little wheel: $\omega=\frac{v}{r}=\frac{130 \pi \mathrm{~cm} / \mathrm{min}}{5.5 \mathrm{~cm}}=\frac{260 \pi}{11} \mathrm{rad} / \mathrm{min} \approx 74 \mathrm{rad} / \mathrm{min}$
11. Suppose we have vectors $\vec{u}=5 \hat{i}+6 \hat{j}$ and $\vec{v}=11 \hat{i}-13 \hat{j}$
a. Draw and label these vectors together in the $x-y$ plane, assuming each has its initial point at $(0,0)$. (SOLN: See diagram at right.)
b. Find the angle between these two vectors.

SOLN: First find the lengths of the vectors:

$$
\begin{aligned}
& |\langle 11,-13\rangle|=\sqrt{11^{2}+13^{2}}=\sqrt{290} \text { and }|\langle 5,6\rangle|=\sqrt{61} \text { so that } \\
& \theta=\cos ^{-1}\left(\frac{\langle 11,-13\rangle \cdot\langle 5,6\rangle}{\sqrt{61} \sqrt{290}}\right) \approx \cos ^{-1}\left(\frac{-23}{133}\right) \approx 100^{\circ}
\end{aligned}
$$

c. Find the length of \vec{u} and the length of \vec{v}. (SOLN: See above.)
d. $|\vec{u}+\vec{v}|=|\langle 16,-7\rangle|=\sqrt{256+49}=\sqrt{305}$ and $|\vec{u}-\vec{v}|=|\langle\vec{u}-\vec{v}\rangle|=\sqrt{397}$

12. Suppose $\vec{v}=11 \hat{i}-13 \hat{j}$. Find a value of b so that the vector $\vec{u}=10 \hat{i}+b \hat{j}$ is orthogonal to v. SOLN: $\vec{v} \cdot \vec{u}=\langle 11,-13\rangle \cdot\langle 10, b\rangle=110-13 b=0 \Leftrightarrow b=\frac{110}{13}$

